Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Tuberculous meningitis is a devastating brain infection that is caused by Mycobacterium tuberculosis and is notoriously difficult to diagnose and treat. New technologies characterising the transcriptome, proteome, and metabolome have identified new molecules and pathways associated with tuberculous meningitis severity and poor outcomes that could offer novel diagnostic and therapeutic targets. The next-generation GeneXpert MTB/RIF Ultra assay, when used on CSF, offers diagnostic sensitivity for tuberculous meningitis of approximately 70%, although it is not widely available and a negative result cannot rule out tuberculous meningitis. Small trials indicate that clinical outcomes might be improved with increased doses of rifampicin, the addition of linezolid or fluoroquinolones to standard antituberculosis therapy, or treatment with adjunctive aspirin combined with corticosteroids. Large phase 3 clinical trials are underway worldwide to address these and other questions concerning the optimal management of tuberculous meningitis; these studies also form a platform for studying pathogenesis and identifying novel diagnostic and treatment strategies, by allowing the implementation of new genomic, transcriptomic, proteomic, and metabolomic technologies in nested substudies.

Original publication




Journal article


Lancet Neurol

Publication Date





450 - 464


Antitubercular Agents, Humans, Mycobacterium tuberculosis, Proteomics, Rifampin, Sensitivity and Specificity, Tuberculosis, Meningeal