Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractCardiotocography measures the human fetal heart rate and uterine activity using ultrasound. While it has been a mainstay in antepartum care since the 1960s, cardiotocograms consist of complex signals that have proven difficult for clinicians to interpret accurately and as such clinical inference is often difficult and unreliable. Previous attempts at codifying approaches to analyzing the features within these signals have failed to demonstrate reliability or gain sufficient traction. Since the early 1990s, the Dawes-Redman system of automated computer analysis of cardiotocography signals has enabled robust analysis of cardiotocographic signal features, employing empirically-derived criteria for assessing fetal wellbeing in the antepartum. Over the past 30 years, the Dawes-Redman system has been iteratively updated, now incorporating analyses from over 100,000 pregnancies. In this review, we examine the history of cardiotocography, signal processing methodologies and feature identification, the development of the Dawes-Redman system, and its clinical applications.

Original publication

DOI

10.1097/FM9.0000000000000141

Type

Journal article

Journal

Maternal-Fetal Medicine

Publication Date

01/01/2022

Volume

4

Pages

130 - 140