Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that can transmit from dromedary camels to humans, causing severe pneumonia, with a 35% mortality rate. Vaccine candidates have been developed and tested in mice, camels, and humans. Previously, we developed a vaccine based on the modified vaccinia virus Ankara (MVA) viral vector, encoding a full-length spike protein of MERS-CoV, MVA-MERS. Here, we report the immunogenicity of high-dose MVA-MERS in prime–boost vaccinations in mice and camels. Methods: Three groups of mice were immunised with MVA wild-type (MVA-wt) and MVA-MERS (MVA-wt/MVA-MERS), MVA-MERS/MVA-wt, or MVA-MERS/MVA-MERS. Camels were immunised with two doses of PBS, MVA-wt, or MVA-MERS. Antibody (Ab) responses were evaluated using ELISA and MERS pseudovirus neutralisation assays. Results: Two high doses of MVA-MERS induced strong Ab responses in both mice and camels, including neutralising antibodies. Anti-MVA Ab responses did not affect the immune responses to the vaccine antigen (MERS-CoV spike). Conclusions: MVA-MERS vaccine, administered in a homologous prime–boost regimen, induced high levels of neutralising anti-MERS-CoV antibodies in mice and camels. This could be considered for further development and evaluation as a dromedary vaccine to reduce MERS-CoV transmission to humans.

Original publication




Journal article



Publication Date