Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The reliable monitoring of heart rate during intense exercise is imperative to effectively manage training loads while providing insights from a healthcare perspective. However, current technologies perform poorly in contact sports settings. This study aims to evaluate the best approach for heart rate tracking using photoplethysmography sensors embedded into an instrumented mouthguard (iMG). Seven adults wore iMGs and a reference heart rate monitor. Several sensor placements, light sources and signal intensities were explored for the iMG. A novel metric related to the positioning of the sensor in the gum was introduced. The error between the iMG heart rate and the reference data was assessed to obtain insights into the effect of specific iMG configurations on measurement errors. Signal intensity was found to be the most important variable for error prediction, followed by the sensor light source, sensor placement and positioning. A generalized linear model combining an infrared light source, at an intensity of 5.08 mA, and a frontal placement high in the gum area resulted in a heart rate minimum error of 16.33%. This research shows promising preliminary results for the use of oral-based heart rate monitoring, but highlights the need for the careful consideration of sensor configurations within these systems.

Original publication

DOI

10.3390/bios13050533

Type

Journal article

Journal

Biosensors

Publisher

MDPI AG

Publication Date

10/05/2023

Volume

13

Pages

533 - 533