Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We identified in breast cancer cases two germline alterations, R62H and R71W, in presenilin-2 (PS-2), a gene involved in familial Alzheimer's disease (FAD). The role of these alleles in FAD is unclear, but neither allele affected Aβ(42)/Aβ(40) ratio. However, both R62H and R71W alterations compromised PS-2 function in Notch signaling in Caenorhabditis elegans and cell growth inhibition in mouse embryonic fibroblasts, and these effects were dependent on gene dosage. We found that both alterations enhanced the degradation of the PS-2 full-length protein, indicating that they may have a loss-of function effect. The effect of the R71W alteration was noticeably stronger, and we observed an almost threefold higher frequency of this allele in breast cancer cases versus controls, but this difference did not reach statistical significance. Nonetheless, these results collectively suggest that the novel PS-2 alleles described here, especially R71W, affect PS-2 function and may potentially confer a moderate risk of susceptibility to breast cancer. © 2006 Nature Publishing Group All rights reserved.

Original publication

DOI

10.1038/sj.onc.1209397

Type

Journal article

Journal

Oncogene

Publication Date

15/06/2006

Volume

25

Pages

3557 - 3564