Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Drug-resistant tuberculosis (TB) infection is a growing and potent concern, and combating it will be necessary to achieve the WHO's goal of a 95% reduction in TB deaths by 2035. While prior studies have explored the evolution and spread of drug resistance, we still lack a clear understanding of the fitness costs (if any) imposed by resistance-conferring mutations and the role that Mtb genetic lineage plays in determining the likelihood of resistance evolution. This study offers insight into these questions by assessing the dynamics of resistance evolution in a high-burden Southeast Asian setting with a diverse lineage composition. It demonstrates that there are clear lineage-specific differences in the dynamics of resistance acquisition and transmission and shows that different lineages evolve resistance via characteristic mutational pathways.

Original publication

DOI

10.1128/spectrum.02562-23

Type

Journal article

Journal

Microbiol Spectr

Publication Date

16/11/2023

Keywords

Mycobacterium tuberculosis, antimicrobial resistance, pathogen genomics