Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Contemporary medical contrastive learning faces challenges from inconsistent semantics and sample pair morphology, leading to dispersed and converging semantic shifts. The variability in text reports, due to multiple authors, complicates semantic consistency. To tackle these issues, we propose a two-step approach. Initially, text reports are converted into a standardized triplet format, laying the groundwork for our novel concept of “observations” and “verdicts”. This approach refines the Entity, Position, Exist triplet into binary questions, guiding towards a clear “verdict”. We also innovate in visual pre-training with a Meijeringbased masking, focusing on features representative of medical images’ local context. By integrating this with our text conversion method, our model advances cross-modal representation in a multimodal contrastive learning framework, setting new benchmarks in medical image analysis.

Type

Conference paper

Publisher

Springer

Publication Date

15/07/2024