Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AbstractIdentification and characterization of mutations that disrupt normal hematopoiesis are essential for understanding the genetic pathways that control the development and regulation of the mammalian hematopoietic system. Previously, the fitness 1 gene was identified by five, independent mutations in N-ethyl-N-nitrosourea (ENU) saturation mutagenesis experiments within the albino (c) region of mouse chromosome 7 (MMU7). We report here that fit1 mutants are anemic, display numerous peripheral blood defects, and are deficient in early hematopoietic progenitor cell populations. The number of both erythroid and myeloid progenitors, as well as B cells, are reduced. These results implicate fit1 involvement in normal hematopoiesis and suggest that further characterization of the fit1 gene, and the five presumed point mutations of the gene, will lead to an improved understanding of normal hematopoiesis in the mouse.

Original publication

DOI

10.1182/blood.v90.5.1850

Type

Journal article

Journal

Blood

Publisher

American Society of Hematology

Publication Date

01/09/1997

Volume

90

Pages

1850 - 1857