Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Admixture is recognized as a widespread feature of human populations, renewing interest in the possibility that genetic exchange can facilitate adaptations to new environments. Studies of Tibetans revealed candidates for high-altitude adaptations in the EGLN1 and EPAS1 genes, associated with lower haemoglobin concentration. However, the history of these variants or that of Tibetans remains poorly understood. Here we analyse genotype data for the Nepalese Sherpa, and find that Tibetans are a mixture of ancestral populations related to the Sherpa and Han Chinese. EGLN1 and EPAS1 genes show a striking enrichment of high-altitude ancestry in the Tibetan genome, indicating that migrants from low altitude acquired adaptive alleles from the highlanders. Accordingly, the Sherpa and Tibetans share adaptive haemoglobin traits. This admixture-mediated adaptation shares important features with adaptive introgression. Therefore, we identify a novel mechanism, beyond selection on new mutations or on standing variation, through which populations can adapt to local environments.

Original publication

DOI

10.1038/ncomms4281

Type

Journal article

Journal

Nat Commun

Publication Date

2014

Volume

5

Keywords

Adaptation, Biological, Adult, Altitude, Asians, Basic Helix-Loop-Helix Transcription Factors, Female, Gene Flow, Humans, Hypoxia-Inducible Factor-Proline Dioxygenases, Male, Middle Aged, Tibet, Young Adult