Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Offering patients with tuberculosis (TB) an optimal and timely treatment regimen depends on the rapid detection of Mycobacterium tuberculosis (Mtb) drug resistance from clinical samples. Finding Low Abundance Sequences by Hybridization (FLASH) is a technique that harnesses the efficiency, specificity, and flexibility of the Cas9 enzyme to enrich targeted sequences. Here, we used FLASH to amplify 52 candidate genes probably associated with resistance to first- and second-line drugs in the Mtb reference strain (H37Rv), then detect drug resistance mutations in cultured Mtb isolates, and in sputum samples. 92% of H37Rv reads mapped to Mtb targets, with 97.8% of target regions covered at a depth ≥ 10X. Among cultured isolates, FLASH-TB detected the same 17 drug resistance mutations as whole genome sequencing (WGS) did, but with much greater depth. Among the 16 sputum samples, FLASH-TB increased recovery of Mtb DNA compared with WGS (from 1.4% [IQR 0.5-7.5] to 33% [IQR 4.6-66.3]) and average depth reads of targets (from 6.3 [IQR 3.8-10.5] to 1991 [IQR 254.4-3623.7]). FLASH-TB identified Mtb complex in all 16 samples based on IS1081 and IS6110 copies. Drug resistance predictions for 15/16 (93.7%) clinical samples were highly concordant with phenotypic DST for isoniazid, rifampicin, amikacin, and kanamycin [15/15 (100%)], ethambutol [12/15 (80%)] and moxifloxacin [14/15 (93.3%)]. These results highlighted the potential of FLASH-TB for detecting Mtb drug resistance from sputum samples.

Original publication




Journal article


J Clin Microbiol

Publication Date





CRISPR, FLASH, Mycobacterium tuberculosis, RNA guide, drug resistance, sequencing, Humans, Antitubercular Agents, Sputum, Tuberculosis, Multidrug-Resistant, Tuberculosis, Mycobacterium tuberculosis, Microbial Sensitivity Tests