Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The World Health Organization has a goal of universal drug susceptibility testing for patients with tuberculosis; however, molecular diagnostics to date have focused largely on first-line drugs and predicting binary susceptibilities. We used a multivariable linear mixed model alongside whole genome sequencing and a quantitative microtiter plate assay to relate genomic mutations to minimum inhibitory concentration in 15,211 Mycobacterium tuberculosis patient isolates from 23 countries across five continents. This identified 492 unique MIC-elevating variants across thirteen drugs, as well as 91 mutations resulting in hypersensitivity. Our results advance genetics-based diagnostics for tuberculosis and serve as a curated training/testing dataset for development of drug resistance prediction algorithms.


Journal article


Nature Communications


Springer Nature

Publication Date