Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have introduced two specific point mutations, located 20 base pairs apart, into the endogenous murine gene that encodes the largest subunit of RNA polymerase II (RPII215). The first mutation conferred resistance to the mushroom toxin alpha-amanitin (amar), and the second mutation generated a restriction fragment length polymorphism without altering the protein sequence. Targeted amar clones were generated at a frequency of 1 in 30 totipotent embryonic stem cells that expressed stably integrated DNA vectors after electroporation. Thirty to 40% of these clones had acquired both mutations, whereas, surprisingly, the remaining clones had acquired the specific amar point mutation but lacked the restriction fragment length polymorphism. We suggest that the latter clones were generated by independent DNA mismatch repair rather than by double crossover or gene conversion. These results demonstrate that it is possible to introduce specific point mutations into an endogenous gene in embryonic stem cells. Thus it should be possible to introduce single base substitutions into other cellular genes, including nonselectable genes, by optimizing the efficiency of gene transfer and/or the sensitivity of screening for targeted clones.

Original publication

DOI

10.1073/pnas.87.12.4680

Type

Journal article

Journal

Proceedings of the National Academy of Sciences

Publisher

Proceedings of the National Academy of Sciences

Publication Date

06/1990

Volume

87

Pages

4680 - 4684