Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Sherpas' adaptation to high altitude has been hypothesized as being due to a genetic basis since the beginning of the last century, but this has yet to be demonstrated. We randomly enrolled 105 Sherpas in Namche Bazaar (3440 m) and 111 non-Sherpa Nepalis in Kathmandu (1330 m) in Nepal. The genotypes of Glu298Asp and eNOS4b/a polymorphisms of the endothelial nitric oxide synthase (eNOS) gene were identified. The metabolites of nitric oxide (NO( x ): nitrite and nitrate) in serum were measured. The frequencies of the Glu and eNOS4b alleles were significantly higher in Sherpas (Glu: 87.5%; eNOS4b: 96.7%) than in non-Sherpas (Glu: 77.9%, p = 0.036; eNOS4b: 90.5%, p = 0.009). In addition, the combination of the wild types of Glu298Glu and eNOS4b/b was significantly greater in Sherpas (66.7%) than non-Sherpas (47.7%, p = 0.008). However, the serum NO( x ) was significantly lower in Sherpas (53.2 +/- 4.6 micromol/L) than in non-Sherpas (107.3 +/- 9.0 micromol/L, p < 0.0001). The wild alleles of the Glu298Asp and eNOS4b/a polymorphisms of the eNOS gene may be a benefit for the Sherpas' adaptation to high altitude. The nitric oxide metabolites (NO( x )) in serum vary individually, thus it is not a reliable indicator for endogenous nitric oxide production.

Original publication

DOI

10.1089/ham.2006.7.209

Type

Journal article

Journal

High Alt Med Biol

Publication Date

2006

Volume

7

Pages

209 - 220

Keywords

Acclimatization, Adult, Altitude, Altitude Sickness, Asians, Female, Gene Frequency, Genetic Predisposition to Disease, Genotype, Humans, Hypoxia, Male, Nepal, Nitric Oxide, Nitric Oxide Synthase Type III, Polymorphism, Genetic