Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella Species in Pediatric Patients Visiting International Friendship Children's Hospital, Kathmandu, Nepal.
Kayastha K., Dhungel B., Karki S., Adhikari B., Banjara MR., Rijal KR., Ghimire P.
INTRODUCTION: Emergence and spread of antimicrobial resistance (AMR) is a global threat and significantly affects the treatment options for common infectious diseases. Inappropriate use of antibiotics, particularly third-generation cephalosporins, has contributed to the development of AMR. This study aims to determine the prevalence of extended-spectrum β-lactamase (ESBL) production in Escherichia coli and Klebsiella species isolated from various clinical samples. METHODS: This cross-sectional study was conducted at International Friendship Children's Hospital, Kathmandu, Nepal, from August 2017 to January 2018. A total of 1443 samples that included urine, pus, wound swab, endotracheal tip, catheter tip, and blood were collected from pediatric patients below 15 years and processed by standard microbiological methods. Following sufficient incubation, isolates were identified by colony morphology, gram staining, and necessary biochemical tests. Identified bacterial isolates were then tested for antibiotic susceptibility test by modified Kirby-Bauer disk diffusion method and were subjected to ESBL screening by using 30 µg cefotaxime and ceftazidime. The ESBL production was confirmed by combination disk method. RESULTS: From a total of 103 nonduplicated clinical isolates, E. coli (n = 79), Klebsiella pneumoniae (n = 18), and Klebsiella oxytoca (n = 6) were isolated from different clinical specimens. Of which, 64 (62.1%) exhibited multidrug resistance, and 29 (28.2%) were ESBL producers. All ESBL-producing isolates were resistant toward ampicillin, cefotaxime, ceftriaxone, and ceftazidime. Most ESBL producers were susceptible toward imipenem (89.7%; 26/29), nitrofurantoin (82.8%; 24/29), piperacillin/tazobactam (79.3%; 23/29), and amikacin (72.4%; 21/29). CONCLUSIONS: A high prevalence of multidrug-resistant ESBL organisms was found in this study among pediatric patients. Treatment based on their routine identification and susceptibility to specific antibiotics is critical to halt the spread of AMR and ESBL.