Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This study presents a novel approach to automatic detection and segmentation of the Crown Rump Length (CRL) and Nuchal Translucency (NT), two essential measurements in the first trimester US scan. The proposed method automatically localises a standard plane within a video clip as defined by the UK Fetal Abnormality Screening Programme. A Nested Hourglass (NHG) based network performs semantic pixel-wise segmentation to extract NT and CRL structures. Our results show that the NHG network is faster (19.52% < GFlops than FCN32) and offers high pixel agreement (meanIoU=80.74) with expert manual annotations.

Original publication

DOI

10.1109/ISBI52829.2022.9761400

Type

Conference paper

Publisher

IEEE

Publication Date

26/04/2022

Pages

1 - 5

Keywords

crown rump length (CRL), FFR, image segmentation, nuchal translucency (NL), ultrasound, video segmentation