Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

An electronic health record (EHR) is a vital high-dimensional part of medical concepts. Discovering implicit correlations in the information of this data set and the research and informative aspects can improve the treatment and management process. The challenge of concern is the data sources' limitations in finding a stable model to relate medical concepts and use these existing connections. This paper presents Patient Forest, a novel end-to-end approach for learning patient representations from tree-structured data for readmission and mortality prediction tasks. By leveraging statistical features, the proposed model is able to provide an accurate and reliable classifier for predicting readmission and mortality. Experiments on MIMIC-III and eICU datasets demonstrate Patient Forest outperforms existing machine learning models, especially when the training data are limited. Additionally, a qualitative evaluation of Patient Forest is conducted by visualising the learnt representations in 2D space using the t-SNE, which further confirms the effectiveness of the proposed model in learning EHR representations.

Original publication

DOI

10.3390/s23146571

Type

Journal article

Journal

Sensors (Basel)

Publication Date

21/07/2023

Volume

23

Keywords

deep learning, deep random forest, electronic health record, intensive care unit, representation learning, Humans, Electronic Health Records, Machine Learning