Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

One of the tenets of the radio pulsar observational picture is that the integrated pulse profiles are constant with time. This assumption underpins much of the fantastic science made possible via pulsar timing. Over the past few years, however, this assumption has come under question with a number of pulsars showing pulse shape changes on a range of timescales. Here, we show the dramatic appearance of a bright component in the pulse profile of PSR J0738-4042 (B0736-40). The component arises on the leading edge of the profile. It was not present in 2004 but strongly present in 2006 and all observations thereafter. A subsequent search through the literature shows the additional component varies in flux density over timescales of decades. We show that the polarization properties of the transient component are consistent with the picture of competing orthogonal polarization modes. Faced with the general problem of identifying and characterising average profile changes, we outline and apply a statistical technique based on a Hidden Markov Model. The value of this technique is established through simulations, and is shown to work successfully in the case of low signal-to-noise profiles.

Type

Journal article

Publication Date

11/03/2011

Keywords

astro-ph.HE, astro-ph.HE