Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Aspartyl/asparaginyl hydroxylase (AspH) catalyzes the post-translational hydroxylations of vital human proteins, playing an essential role in maintaining their biological functions. Single-point mutations in the Second Coordination Sphere (SCS) and long-range (LR) residues of AspH have been linked to pathological conditions such as the ophthalmologic condition Traboulsi syndrome and chronic kidney disease (CKD). Although the clinical impact of these mutations is established, there is a critical knowledge gap regarding their specific atomistic effects on the catalytic mechanism of AspH. In this study, we report integrated computational investigations on the potential mechanistic implications of four mutant forms of human AspH with clinical importance: R735W, R735Q, R688Q, and G434V. All the mutant forms exhibited altered binding interactions with the co-substrate 2-oxoglutarate (2OG) and the main substrate in the ferric-superoxo and ferryl complexes, which are critical for catalysis, compared to the wild-type (WT). Importantly, the mutations strongly influence the energetics of the frontier molecular orbitals (FMOs) and, thereby, the activation energies for the hydrogen atom transfer (HAT) step compared to the WT AspH. Insights from our study can contribute to enzyme engineering and the development of selective modulators for WT and mutants of AspH, ultimately aiding in the treatment of Traboulsi syndrome and CKD.

Original publication

DOI

10.1002/cphc.202400303

Type

Journal article

Journal

Chemphyschem

Publication Date

05/06/2024

Keywords

Conformational Dynamics, Hydrogen Atom Transfer, Mutations, QM/MM, Second Coordination Sphere Effects