Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

2'-Pyridine ring substituted analogs of epibatidine were assessed for equilibrium binding affinity, functional potency, and efficacy at rat neuronal nicotinic receptors expressed in Xenopus oocytes. Binding affinities were determined in membrane homogenates from oocytes expressing alpha2beta2, alpha2beta4, alpha3beta2, alpha3beta4, alpha4beta2, or alpha4beta4. Efficacy (relative to acetylcholine) and potency were measured electrophysiologically with oocytes expressing alpha3beta4, alpha4beta2, and alpha4beta4. Hydroxy, dimethylamino, and trifluoromethanesulfonate analogs had affinities too low for accurate measurement. The bromo analog had affinities 4- to 55-fold greater at beta2 than at beta4-containing receptors, modestly greater efficacy at alpha4beta4 than at alpha4beta2, and 5- to 10-fold greater potency at a4beta4 than at alpha3beta4 or alpha4beta2. The fluoro analog displayed affinities 52- to 875-fold greater at beta2- than at beta4-containing receptors, efficacy at alpha4beta4 receptors 3-fold greater than at alpha4beta2 and alpha3beta4, and was equipotent at all receptors tested. The norchloro analog showed affinities 114- to 3500-fold greater at beta2- than at beta4-containing receptors, 2-fold greater efficacy at alpha4beta2 and alpha4beta4 than at alpha3beta4, and 4- to 5-fold greater potency at alpha4beta4 and alpha3beta4 than at alpha4beta2. The amino analog displayed affinities 10- to 115-fold greater at beta2- than at beta4-containing receptors, 3-fold greater efficacy at alpha3beta4 than at alpha4beta2, and 2- to 4-fold greater potency at alpha3beta4 and alpha4beta4 than at alpha4beta2. Although these compounds displayed a variety of differences in affinity, efficacy, and potency, with one exception (binding affinity and functional potency at alpha4beta4 receptors) there were no significant correlations among these properties.

Original publication

DOI

10.1124/jpet.102.035899

Type

Journal article

Journal

J Pharmacol Exp Ther

Publication Date

09/2002

Volume

302

Pages

1246 - 1252

Keywords

Animals, Binding, Competitive, Bridged Bicyclo Compounds, Heterocyclic, Central Nervous System, Dose-Response Relationship, Drug, Electrophysiology, Neurons, Nicotinic Agonists, Oocytes, Patch-Clamp Techniques, Peripheral Nervous System, Pyridines, Rats, Receptors, Nicotinic, Structure-Activity Relationship, Xenopus