Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Aspartate/asparagine-β-hydroxylase (AspH) is a transmembrane 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes the post-translational hydroxylation of aspartate- and asparagine-residues in epidermal growth factor-like domains (EGFDs) of its substrate proteins. Upregulation of ASPH and translocation of AspH from the endoplasmic reticulum membrane to the surface membrane of cancer cells is associated with enhanced cell motility and worsened clinical prognosis. AspH is thus a potential therapeutic and diagnostic target for cancer. This chapter describes methods for the production and purification of soluble constructs of recombinant human AspH suitable for biochemical and crystallographic studies. The chapter also describes efficient methods for performing turnover and inhibition assays which monitor catalysis of isolated recombinant human AspH in vitro using solid phase extraction coupled to mass spectrometry (SPE-MS). The SPE-MS assays employ synthetic disulfide- or thioether-bridged macrocyclic oligopeptides as substrates; a macrocycle is an apparently essential requirement for productive AspH catalysis and mimics an EGFD disulfide isomer that is not typically observed in crystal and NMR structures. SPE-MS assays can be used to monitor catalysis of 2OG oxygenases other than AspH; the methods described herein are representative for 2OG oxygenase SPE-MS assays useful for performing kinetic and/or inhibition studies.

Original publication

DOI

10.1016/bs.mie.2024.06.003

Type

Chapter

Book title

Methods in Enzymology

Publication Date

01/01/2024