Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Clavulanic acid is a medicinally important inhibitor of serine β-lactamases (SBLs). We report studies on the mechanisms by which clavulanic acid inhibits representative Ambler class A (TEM-116), C (Escherichia coli AmpC), and D (OXA-10) SBLs using denaturing and non-denaturing mass spectrometry (MS). Similarly to observations with penam sulfones, most of the results support a mechanism involving acyl enzyme complex formation, followed by oxazolidine ring opening without efficient subsequent scaffold fragmentation (at pH 7.5). This observation contrasts with previous MS studies, which identified clavulanic acid scaffold fragmented species as the predominant SBL bound products. In all the SBLs studied here, fragmentation was promoted by acidic conditions, which are commonly used in LC‑MS analyses. Slow fragmentation was, however, observed under neutral conditions with TEM-116 on prolonged reaction with clavulanic acid. Although our results imply clavulanic acid scaffold fragmentation is likely not crucial for SBL inhibition in vivo, development of inhibitors that fragment to give stable covalent complexes is of interest.

Original publication

DOI

10.1002/cbic.202400280

Type

Journal article

Journal

Chembiochem

Publication Date

25/07/2024

Keywords

antimicrobial resistance, clavulanic acid, mechanism-based inhibition, penam sulfone, serine β lactamase inhibitor