Doubly Robust Kernel Statistics for Testing Distributional Treatment Effects
Fawkes J., Hu R., Evans RJ., Sejdinovic D.
With the widespread application of causal inference, it is increasingly important to have tools which can test for the presence of causal effects in a diverse array of circumstances. In this vein we focus on the problem of testing for distributional causal effects, where the treatment affects not just the mean, but also higher order moments of the distribution, as well as multidimensional or structured outcomes. We build upon a previously introduced framework, Counterfactual Mean Embeddings, for representing causal distributions within Reproducing Kernel Hilbert Spaces (RKHS) by proposing new, improved, estimators for the distributional embeddings. These improved estimators are inspired by doubly robust estimators of the causal mean, using a similar form within the kernel space. We analyse these estimators, proving they retain the doubly robust property and have improved convergence rates compared to the original estimators. We then use the proposed estimators as test statistics in a new permutation based test for distributional causal effects. Finally, we experimentally and theoretically demonstrate the validity of these tests.