Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ᅟ: Spectrum scarcity due to inefficient utilisation has ignited a plethora of dynamic spectrum access solutions to accommodate the expanding demand for future wireless networks. Dynamic spectrum access systems allow secondary users to utilise spectrum bands owned by primary users if the resulting interference is kept below a pre-designated threshold. Primary and secondary user spectrum occupancy patterns determine if minimum interference and seamless communications can be guaranteed. Thus, spectrum occupancy prediction is a key component of an optimised dynamic spectrum access system. Spectrum occupancy prediction recently received significant attention in the wireless communications literature. Nevertheless, a single consolidated literature source on statistical spectrum occupancy prediction is not yet available in the open literature. Our main contribution in this paper is to provide a statistical prediction classification framework to categorise and assess current spectrum occupancy models. An overview of statistical sequential prediction is presented first. This statistical background is used to analyse current techniques for spectrum occupancy prediction. This review also extends spectrum occupancy prediction to include cooperative prediction. Finally, theoretical and implementation challenges are discussed.

Original publication

DOI

10.1186/s13638-017-1019-8

Type

Journal article

Journal

Eurasip Journal on Wireless Communications and Networking

Publication Date

01/12/2018

Volume

2018